Volume of Composite Solids

1. What volume of sand is required to completely fill up the hourglass shown below? Note: 12 m is the height of the truncated cone, not the lateral length of the cone.

Volume of Composite Solids

1. What volume of sand is required to completely fill up the hourglass shown below? Note: 12 *m* is the height of the truncated cone, not the lateral length of the cone.

Let *x m* represent the height of the portion of the cone that has been removed.

$$\frac{4}{9} = \frac{x}{x+12}$$

$$4(x+12) = 9x$$

$$4x + 48 = 9x$$

$$48 = 5x$$

$$\frac{48}{5} = x$$

$$9.6 = x$$

The volume of the removed cone is

$$V = \frac{1}{3}\pi(4)^2(9.6)$$
$$= \frac{153.6}{3}\pi.$$

The volume of the cone is

$$V = \frac{1}{3}\pi(9)^2(21.6)$$
$$= \frac{1749.6}{3}\pi.$$

The volume of one truncated cone is $\frac{1749.6}{3}\pi - \frac{153.6}{3}\pi$ $= \left(\frac{1749.6}{3} - \frac{153.6}{3}\right)\pi$ $= \frac{1596}{3}\pi = 532 \pi.$

The volume of sand needed to fill the hourglass is $1064\pi m^3$.