Square Roots

1. Find the positive value of x that makes the equation true: $x^2 = 256^{-1}$.

2. Find the positive value of x that makes each equation true. Check your solution.

a) $x^2 = 225$

b) $x^2 = 361^{-1}$

Go to <u>onlinemathlearning.com</u> for more free math resources

Square Roots

1. Find the positive value of x that makes the equation true: $x^2 = 256^{-1}$.

$x^2 = 256^{-1}$ $\sqrt{x^2} = \sqrt{256^{-1}}$	Check:
$x = \sqrt{256^{-1}}$	$(16^{-1})^2 = 256^{-1}$ $16^{-2} = 256^{-1}$
$x = \sqrt{\frac{1}{256}}$	$\frac{1}{16^2} = 256^{-1}$
$x = \frac{1}{16}$	$\frac{1}{256} = 256^{-1}$
$x = 16^{-1}$	$256^{-1} = 256^{-1}$

2. Find the positive value of x that makes each equation true. Check your solution.

a) $x^2 = 225$	
$x^2 = 225$	Check:
$\sqrt{x^2} = \sqrt{225}$ $x = \sqrt{225}$	$15^2 = 225$
$\begin{array}{l} x = \sqrt{225} \\ x = 15 \end{array}$	225 = 225

b) $x^2 = 361^{-1}$

$$x^{2} = 361^{-1}$$

$$\sqrt{x^{2}} = \sqrt{361^{-1}}$$

$$x = \sqrt{361^{-1}}$$

$$x = \sqrt{\frac{1}{361}}$$

$$x = \frac{1}{19}$$

$$x = 19^{-1}$$
Check:
(19^{-1})^{2} = 361^{-1}
$$19^{-2} = 361^{-1}$$

$$\frac{1}{19^{2}} = 361^{-1}$$

$$\frac{1}{361} = 361^{-1}$$

Go to <u>onlinemathlearning.com</u> for more free math resources