Trigonometry Worksheets

Sine and Cosine of Complementary Angles

If α and β are the measurements of complementary angles, then we are going to show that $\sin \alpha=\cos \beta$. In right triangle $A B C$, the measurement of acute angle $\angle A$ is denoted by α, and the measurement of acute angle $\angle B$ is denoted by β.
Determine the following values in the table

$\sin \alpha$	$\sin \beta$	$\cos \alpha$	$\cos \beta$

What can you conclude from the results?

Trigonometry Worksheets

Sine and Cosine of Complementary Angles

If α and β are the measurements of complementary angles, then we are going to show that $\sin \alpha=\cos \beta$.
In right triangle $A B C$, the measurement of acute angle $\angle A$ is denoted by α, and the measurement of acute angle $\angle B$ is denoted by β.
Determine the following values in the table

$\sin \alpha$	$\sin \beta$	$\cos \alpha$	$\cos \beta$
$\sin \alpha=\frac{\mathrm{opp}}{\mathrm{hyp}}=\frac{a}{c}$	$\sin \beta=\frac{\mathrm{opp}}{\mathrm{hyp}}=\frac{b}{c}$	$\cos \alpha=\frac{\mathrm{adj}}{\mathrm{hyp}}=\frac{b}{c}$	$\cos \beta=\frac{\mathrm{adj}}{\mathrm{hyp}}=\frac{a}{c}$

What can you conclude from the results?
Since the ratios for $\sin \alpha$ and $\cos \beta$ are the same, $\sin \alpha=\cos \beta$, and the ratios for $\cos \alpha$ and $\sin \beta$ are the same; additionally, $\cos \alpha=\sin \beta$. The sine of an angle is equal to the cosine of its complementary angle, and the cosine of an angle is equal to the sine of its complementary angle.

