## **Application of Pythagorean Theorem**

1. The area of the right triangle shown below is  $26.46 in^2$ . What is the perimeter of the right triangle? Round your answer to the tenths place.



2. What length of ladder is needed to reach a height of 7 feet along the wall when the base of the ladder is 4 feet from the wall? Round your answer to the tenths place.



Go to onlinemathlearning.com for more free math resources

## **Application of Pythagorean Theorem**

1. The area of the right triangle shown below is  $26.46 in^2$ . What is the perimeter of the right triangle? Round your answer to the tenths place.



Let b in. represent the length of the base of the triangle where h = 6.3

$$A = \frac{bh}{2}$$

$$26.46 = \frac{6.3b}{2}$$

$$52.92 = 6.3b$$

$$\frac{52.92}{6.3} = \frac{6.3b}{6.3}$$

$$8.4 = b$$

*Let c in. represent the length of the hypotenuse.* 

$$6.3^{2} + 8.4^{2} = c^{2}$$

$$39.69 + 70.56 = c^{2}$$

$$110.25 = c^{2}$$

$$\sqrt{110.25} = \sqrt{c^{2}}$$

$$\sqrt{110.25} = c$$

$$10.5 = c$$

The length of the hypotenuse is 10.5 in. The perimeter of the triangle is 6.3 in. + 8.4 in. + 10.5 in. = 25.2 in.

2. What length of ladder is needed to reach a height of 7 feet along the wall when the base of the ladder is 4 feet from the wall? Round your answer to the tenths place.

*Let c feet represent the length of the ladder.* 

$$7^{2} + 4^{2} = c^{2}$$
  

$$49 + 16 = c^{2}$$
  

$$65 = c^{2}$$
  

$$\sqrt{65} = \sqrt{c^{2}}$$
  

$$\sqrt{65} = c$$
  

$$8.1 = c$$

The ladder must be approximately 8.1 feet long to reach 7 feet up a wall when placed 4 feet from the wall.



Go to onlinemathlearning.com for more free math resources