Percent Population Problems Worksheet

1. In one year's time, 20% of Ms. McElroy's investments increased by $5 \%, 30 \%$ of her investments decreased by 5%, and 50% of her investments increased by 3%. By what percent did the total of her investments increase?
2. Jodie spent 25\% less buying her English reading book than Claudia. Gianna spent 9\% less than Claudia. Gianna spent more than Jodie by what percent?
3. Mr. Ellis is a teacher who tutors students after school. Of the students he tutors, 30% need help in computer science and the rest need assistance in math. Of the students who need help in computer science, 40% are enrolled in Mr. Ellis's class during the school day. Of the students who need help in math, 25% are enrolled in his class during the school day. What percent of the after-school students are enrolled in Mr. Ellis's classes?

Percent Population Problems Worksheet

1. In one year's time, 20% of Ms. McElroy's investments increased by $5 \%, 30 \%$ of her investments decreased by 5%, and 50% of her investments increased by 3%. By what percent did the total of her investments increase?

Let n represent the dollar amount of Ms. McElroy's investments before the changes occurred during the year

After the changes, the following represents the dollar amount of her investments:

$$
\begin{aligned}
& 0.2 n(1.05)+0.3 n(0.95)+0.5 n(1.03) \\
& =0.21 n+0.285 n+0.515 n \\
& =1.01 n
\end{aligned}
$$

Since $1.01=101 \%$, Ms. McElroy's total investments increased by 1%.
2. Jodie spent 25% less buying her English reading book than Claudia. Gianna spent 9\% less than Claudia. Gianna spent more than Jodie by what percent?

Let c represent the amount Claudia spent, in dollars. The number of dollars Jodie spent was (1-0.25) $c=0.75 c$, and the number of dollars Gianna spent was $(1-0.09) c=0.91 c$.
$0.91 c \div 0.75 c=\frac{91}{75} \times 100 \%=121 \frac{1}{3} \%$. Gianna spent $21 \frac{1}{3} \%$ more than Jodie.
3. Mr. Ellis is a teacher who tutors students after school. Of the students he tutors, 30% need help in computer science and the rest need assistance in math. Of the students who need help in computer science, 40% are enrolled in Mr. Ellis's class during the school day. Of the students who need help in math, 25% are enrolled in his class during the school day. What percent of the after-school students are enrolled in Mr. Ellis's classes?

Let t represent the after-school students tutored by Mr. Ellis.

Computer science after-school students: $0.3 t$
Math after-school students: $0.7 t$
After-school computer science students who are also Mr. Ellis's students: $0.4 \times 0.3 t=0.12 t$ After-school math students who are also Mr. Ellis's students: $0.25 \times 0.7 t=0.175 t$

Number of after-school students who are enrolled in Mr. Ellis's classes: $0.12 t+0.175 t=0.295 t$
Out of all the students Mr. Ellis tutors, 29.5\% of the tutees are enrolled in his classes.

