This page gives the list of formulas included in the 0580 Question Paper for 2025 to 2027

| Area, $A$ , of triangle, base $b$ , height $h$ . | A = | . 1 | b | h |
|--------------------------------------------------|-----|-----|---|---|
|                                                  |     | -   |   |   |

Area, A, of circle of radius r. 
$$A = \pi r^2$$

Circumference, C, of circle of radius r. 
$$C = 2\pi r$$

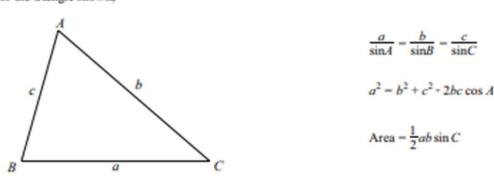
Curved surface area, A, of cylinder of radius r, height h. 
$$A = 2\pi rh$$

Curved surface area, A, of cone of radius r, sloping edge l. 
$$A = \pi rl$$

Surface area, A, of sphere of radius r. 
$$A = 4\pi r^2$$

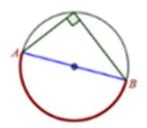
Volume, 
$$V$$
, of prism, cross-sectional area  $A$ , length  $I$ .  $V = AI$ 

Volume, 
$$V$$
, of pyramid, base area  $A$ , height  $h$ .  $V = \frac{1}{3}Ah$ 


Volume, V, of cylinder of radius r, height h. 
$$V = \pi r^2 h$$

Volume, V, of cone of radius r, height h. 
$$V = \frac{1}{3}\pi r^2 l$$

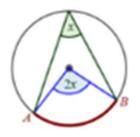
Volume, V, of sphere of radius r. 
$$V = \frac{4}{3}\pi r^2$$


For the equation 
$$ax^2 + bx + c = 0$$
, where  $a \neq 0$   $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

For the triangle shown,




Go to onlinemathlearning.com for more free math resources


You will need to know the following Circle Theorems (giving reasons for the answers)

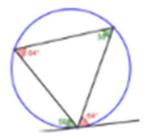


Angle in a semicircle = 90°

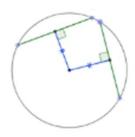


Angle between tangent and radius = 90°

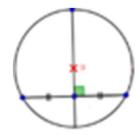



Angle at the centre is twice the angle at the circumference

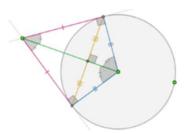



Angles in the same segment are equal




Opposite angles of a cyclic quadrilateral sum to 180°




Alternate segment theorem



Equal chords are equidistant from the centre



The perpendicular bisector of a chord passes through the centre



Tangents from an external point are equal in length.

## Useful information and formulas to remember:

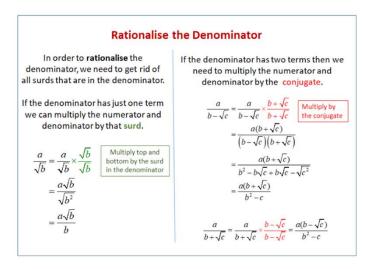
| Perfect Squares | Square Roots      | Squares               |
|-----------------|-------------------|-----------------------|
| 1               | $\sqrt{1} = 1$    | 12 = 1                |
| 4               | $\sqrt{4} = 2$    | $2^2 = 4$             |
| 9               | $\sqrt{9} = 3$    | $3^2 = 9$             |
| 16              | $\sqrt{16} = 4$   | $4^2 = 16$            |
| 25              | $\sqrt{25} = 5$   | $5^2 = 25$            |
| 36              | $\sqrt{36} = 6$   | $6^2 = 36$            |
| 49              | $\sqrt{49} = 7$   | $7^2 = 49$            |
| 64              | $\sqrt{64} = 8$   | $8^2 = 64$            |
| 81              | $\sqrt{81} = 9$   | $9^2 = 81$            |
| 100             | $\sqrt{100} = 10$ | $10^2 = 100$          |
| 121             | $\sqrt{121} = 11$ | 11 <sup>2</sup> = 121 |
| 144             | $\sqrt{144} = 12$ | $12^2 = 144$          |
| 169             | $\sqrt{169} = 13$ | 13 <sup>2</sup> = 169 |
| 196             | $\sqrt{196} = 14$ | 14 <sup>2</sup> = 196 |
| 225             | $\sqrt{225} = 15$ | $15^2 = 225$          |

| D . |   | _ |   |    |    |    |    |
|-----|---|---|---|----|----|----|----|
| Pri | m | e | N | ur | nt | эe | rs |

Memorise: 2,3,5,7,11,13,17,19,23,29,31,37

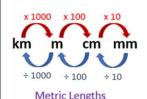
#### **Repeating Decimals to Fractions**

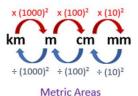
- 1. Let the repeating decimal be x.
- 2. If the repeating part is not after the decimal point, multiply x by a power of 10 such that the repeating part aligns after the decimal point.
- 3. Multiply x by the next power of 10 such that the repeating part aligns after the decimal point.
- 4. Subtract (2) from (3) to eliminate the repeating part.
- 5. Solve for x by dividing.
- 6. Simplify the fraction if necessary.

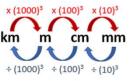

Let 
$$x = 0.\overline{34} = 0.3434...$$
  
 $100x = 34.\overline{34}$   
 $100x - x = 34.\overline{34} - 0.\overline{34}$   
 $99x = 34$   
 $x = \frac{34}{99}$ 

Let 
$$x = 3.0\overline{15} = 3.01515...$$
  
 $10x = 30.\overline{15}$   
 $1000x = 3015.\overline{15}$   
 $1000x - 10x = 3015.\overline{15} - 30.\overline{15}$   
 $900x = 2985$   
 $x = \frac{2985}{900} = \frac{199}{60}$ 

| Convert to S                                         | tandard Form                                |
|------------------------------------------------------|---------------------------------------------|
| Move the decimal point until there is                | one digit to the left of the decimal point. |
| Exponent goes up Decimal point moves left  Examples: | Decimal point                               |
| 156000. = 1.56 x 10 <sup>5</sup>                     | 0.0000053 = 5.3 x 10 <sup>-6</sup>          |
| Move decimal point 5 places left,                    | Move decimal point 6 places right,          |


| Perfect<br>Cubes | Cube<br>Roots         | Cubes         |
|------------------|-----------------------|---------------|
| 1                | $\sqrt[3]{1} = 1$     | $1^3 = 1$     |
| 8                | $\sqrt[3]{8} = 2$     | $2^3 = 8$     |
| 27               | $\sqrt[3]{27} = 3$    | $3^3 = 27$    |
| 64               | $\sqrt[3]{64} = 4$    | $4^3 = 64$    |
| 125              | $\sqrt[3]{125} = 5$   | $5^3 = 125$   |
| 1000             | $\sqrt[3]{1000} = 10$ | $10^3 = 1000$ |


| Rules of Indices<br>For $a \neq 0, b \neq 0$                   |                                                                |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------|--|--|
| Rule                                                           | Example                                                        |  |  |
| $a^x \times a^y = a^{x+y}$                                     | $a^3 \times a^2 = a^{3+2} = a^5$                               |  |  |
| $a^x \div a^y = a^{x-y}$                                       | $a^6 \div a^2 = a^{6-2} = a^4$                                 |  |  |
| $\left(a^{x}\right)^{y}=a^{xy}$                                | $\left(a^2\right)^3 = a^{2\times 3} = a^6$                     |  |  |
| $a^{0} = 1$                                                    | $a^{0} = 1$                                                    |  |  |
| $a^{-x} = \frac{1}{a^x}$                                       | $a^{-5} = \frac{1}{a^5}$                                       |  |  |
| $a^{\frac{x}{y}} = \sqrt[y]{a^x} = \left(\sqrt[y]{a}\right)^x$ | $a^{\frac{3}{5}} = \sqrt[5]{a^3} = \left(\sqrt[5]{a}\right)^3$ |  |  |




3

#### **Converting Metric Measurements**







Metric Volumes

1 litre =  $1000 \text{ cm}^3$  $1 \text{ m}^3 = 1000 \text{ litres}$ 

## Pythagoras' Theorem $c^2 = a^2 + b^2$

Proportion Direct | Inverse

#### Simple Interest Formula

I = Prt

I = Interest P = Principal (Initial Value) r = Interest Rate t = time (years)

A = P + I

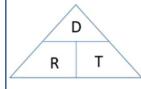
#### Compound Interest Formula

$$A = P \left( 1 + \frac{r}{100} \right)^t$$

A = Future Value

P = Principal (Initial Value)

r % = Interest Rate


t = Time

#### Arc & Area

$$arc of sector = \frac{\theta}{360} \times 2\pi r$$

area of sector = 
$$\frac{\theta}{360} \times \pi r^2$$

area of trapezium =  $\frac{1}{2}(a+b)h$ 



Distance = Rate x Time Rate = Distance ÷ Time Time = Distance ÷ Rate

#### **Angles**

- sum of angles at a point = 360°.
- sum of angles on a straight line = 180°.
- angle sum of a triangle = 180°.
- angle sum of a quadrilateral = 360°
- vertically opposite angles are equal. (X)
- corresponding angles are equal. (F)
- alternate angles are equal. (Z)
- co-interior angles sum to 180°. (C)

#### **SOHCAHTOA**

|     | 0° | 30°                  | 45°                  | 60°                  | 90° |
|-----|----|----------------------|----------------------|----------------------|-----|
| sin | 0  | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1   |
| cos | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0   |
| tan | 0  | $\frac{\sqrt{3}}{3}$ | 1                    | $\sqrt{3}$           | 8   |

#### **Triangles**

Equilateral: 3 sides equal, each angle = 60° Isosceles: 2 sides & 2 angles the same Scalene: no sides or angles are the same

Right-angled: one angle is 90°

sum of interior angles in a polygon:  $(n-2)\times180^{\circ}$ 

size of interior angle in a regular polygon:  $(n-2)\times180^{\circ}$ 

sum of exterior angles in a polygon = 360°

size of exterior angle in a regular polygon:  $\frac{360^{\circ}}{n}$ 

Congruent Triangles: SSS, SAS, AAS, ASA, RHS Similar Triangle: AA, ratio of sides

Similar Figures & Scales

$$\frac{l_1}{l_2} = \frac{b_1}{b_2}, \frac{A_1}{A_2} = \left(\frac{l_1}{l_2}\right)^2, \frac{V_1}{V_2} = \left(\frac{l_1}{l_2}\right)^3$$
$$\left(\frac{A_1}{A_2}\right)^3 = \left(\frac{V_1}{V_2}\right)^2$$

4

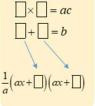
#### **Factorise Expressions**

$$ax + bx + kay + kby = x(a+b) + ky(a+b) = (x+ky)(a+b)$$

$$a^{2}x^{2} - b^{2}y^{2} = (ax+by)(ax-by)$$

$$a^{2} + 2ab + b^{2} = (a+b)^{2}$$

$$ax^{3} + bx^{2} + cx = x(ax^{2} + bx + c)$$


#### Factor Trinomials with No Guessing

Find the two numbers that will make these equations true.

Put the two numbers

in the expression

and simplify.



 $ax^2 + bx + c$ 

# $8x^2 + 2x - 3$ $|6| \times |-4| = -24$ $\frac{1}{8}(8x+6)(8x+4)$ $=\frac{1}{8}(2)(4x+3)(4)(2x-1)$ =(4x+3)(2x-1)

#### **Solve Simultaneous Equations**

#### By Substitution

$$x + 3y = 6$$
  
 $2x + 8y = -12$ 

$$x + 3y = 6 \rightarrow x = -3y + 6$$
Substitute
$$2x + 8y = -12$$

$$2(-3y + 6) + 8y = -12$$
  
 $-6y + 12 + 8y = -12$ 

2y = -24

x + 3(-12) = 6 (substitute into one of the original equations to find the x = 42 ordered pair solution)

#### by Elimination

$$2x + 3y = 16$$
  
 $5x - 4y = -6$ 

$$2x + 3y = 16 \quad (\times 5) \rightarrow \boxed{10x + 15y = 80}$$

$$5x - 4y = -6 \quad (\times -2) \rightarrow \boxed{-10x + 8y = 12}$$
make coefficient

2x + 3(4) = 16 (substitute into one of the original equations to find the ordered pair solution)

#### **Transformations**

- 1. Reflection of a shape in a straight line.
- 2. Rotation of a shape about a centre through an angle.
- 3. Enlargement of a shape from a centre by a scale factor. (Positive, fractional and negative scale factors may be used).
- 4. Translation of a shape by a vector  $\int x$

#### **Completing the Square**

Solve Quadratics

- 1. If a ≠ 1, divide the quadratic by a.
- 2. Write the quadratic in the form

$$x^2 + bx = c$$

3. Add (b/2)<sup>2</sup> to both sides of the equation.

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = c + \left(\frac{b}{2}\right)^2$$

4. Factor the left side of the equation into a perfect square.

$$\left(x + \frac{b}{2}\right)^2 = c + \left(\frac{b}{2}\right)^2$$

5. Square root both sides of the equation and solve for x.

$$x + \frac{b}{2} = \pm \sqrt{c + \left(\frac{b}{2}\right)^2}$$

Linear sequence: an + b. 1st level difference = aQuadratic sequence:  $an^2 + b$ .  $2^{nd}$  level diff = 2aCubic sequence:  $an^3 + b$ .  $3^{rd}$  level diff = 6a

Find the nth term of the linear sequence: 8, 11, 14, 17, ...



#### **Coordinate Geometry**

Equation of straight Line y = mx + c

Gradient Formula  $m = \frac{y_2 - y_1}{x_2 - x_1}$ 

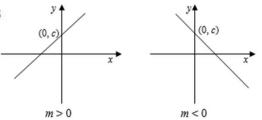
Midpoint Formula  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 

 $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ Distance Formula

When 2 lines are parallel:  $m_1 = m_2$ 

When 2 lines are perpendicular:  $m_1 = -\frac{1}{m_2}$ 

#### Vectors


The vector  $k \begin{pmatrix} x \\ y \end{pmatrix}$  is parallel to  $\begin{pmatrix} x \\ y \end{pmatrix}$ 

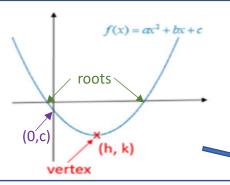
Magnitude of a vector  $\begin{pmatrix} x \\ y \end{pmatrix}$  is  $\sqrt{x^2 + y^2}$ 

5

## **Linear Functions**

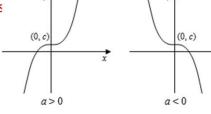
v = mx + c



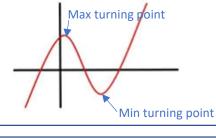

#### **Quadratic Functions**

$$y = ax^2 + bx + c$$

$$y = a\left(x - h\right)^2 + k$$


$$h = -\frac{b}{2a}$$

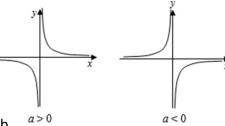
a > 0, u shape a < 0, n shape




#### **Cubic Functions**





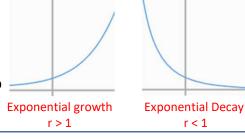

$$v = ax^3 + bx^2 + cx + d$$

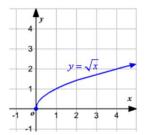


#### **Reciprocal Functions**

$$y = \frac{a}{x} + b = ax^{-1} + b$$

Vertical asymptotes at x = 0Horizontal asymptote at y = b





#### **Exponential Functions**

$$y = ar^x + b$$

y-intercept at (0,a)

Horizontal asymptote at y = b





#### **Convert Quadratic Equation to Vertex Form**

$$v = ax^2 + bx + c$$

$$y = a\left(x^2 + \frac{b}{a}x\right) + c$$

$$y = a \left( x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 - \left( \frac{b}{2a} \right)^2 \right) + c$$

$$y = a \left( \left( x + \frac{b}{2a} \right)^2 - \left( \frac{b}{2a} \right)^2 \right) + c$$

$$y = a\left(x + \frac{b}{2a}\right)^2 - a\left(\frac{b}{2a}\right)^2 + c$$

$$y = a\left(x + \frac{b}{2a}\right)^2 + \left(c - \frac{b^2}{4a}\right)$$

$$y = a(x - h)^2 + k$$
 (vertex form)

$$h = -\frac{b}{2a}$$
 (the x-coordinate of the vertex)

$$k = c - \frac{b^2}{4a}$$
 (the y-coordinate of the vertex)

### **Curved Graphs**

 $\frac{dy}{dx} = anx^{n-1}$  (gradient at point x)

 $\frac{dy}{dx} = 0$  (stationary point, turning point, min, max)

 $\frac{d^2y}{dx^2} < 0$  (max)

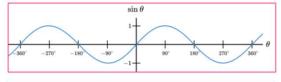
$$\frac{d^2y}{dx^2} > 0 \quad \text{(min)}$$

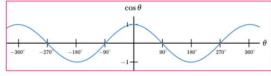
#### Mean

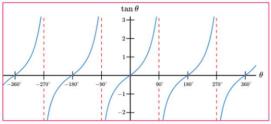
sum of values Individual values: Mean = number of values

sum of (value × frequency) Frequency Table: Mean = total frequency

sum of (interval midpoint × frequency) Frequency Table Mean = total frequency with Intervals:


### **Cumulative Frequency Graph**


Lower Quartile at 25% percentile Median at 50% percentile Upper Quartile at 75% percentile Inter-quartile range = upper quartile – lower quartile


#### Histogram

frequency density = frequency ÷ class width

#### **Trig Graphs**



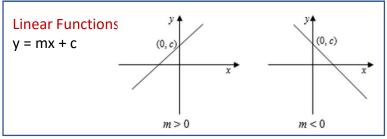


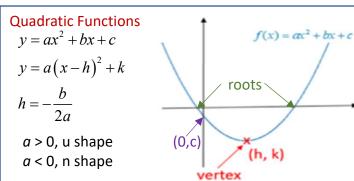


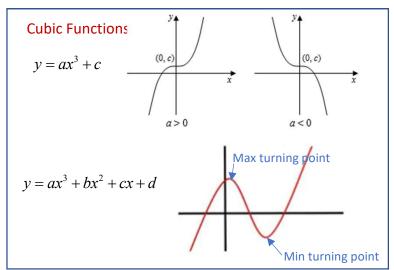
#### The CAST Diagram

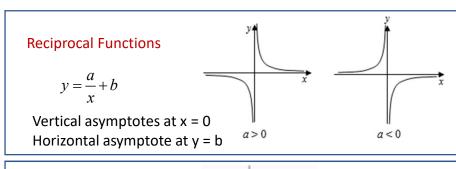
The CAST diagram helps us to see which quadrants the trig ratios are positive.

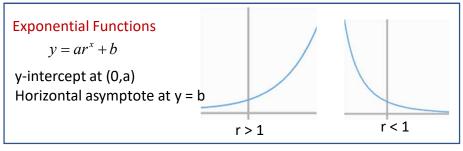
S Sin is positive All are positive Cos and Tan are negative Т


Tan is positive


Sin and Cos are negative


C Cos is positive


Sin and Tan are negative


## **Sketching Graphs**











Go to onlinemathlearning.com for more free math resources