Linear Systems in Three Variables

Solve the following systems of equations

1.
$$2p + q - r = 8$$

 $q + r = 4$
 $p - q = 2$.

2.
$$x + y = 3$$

 $y + z = 6$
 $x + z = 5$

3.
$$r = 2(s - t)$$

 $2t = 3(s - r)$
 $r + t = 2s - 3$

4.
$$2a + 4b + c = 5$$

 $a - 4b = -6$
 $2b + c = 7$

5.
$$2x + y - z = -5$$

 $4x - 2y + z = 10$
 $2x + 3y + 2z = 3$

6.
$$r + 3s + t = 3$$

 $2r - 3s + 2t = 3$
 $-r + 3s - 3t = 1$

Linear Systems in Three Variables

Solve the following systems of equations

1.
$$2p + q - r = 8$$

 $q + r = 4$
 $p - q = 2$.

$$p = 4$$
, $q = 2$, $r = 2$

2.
$$x + y = 3$$

 $y + z = 6$
 $x + z = 5$

$$x = 1, y = 2, z = 4$$

3.
$$r = 2(s - t)$$

 $2t = 3(s - r)$
 $r + t = 2s - 3$

$$r = 2$$
, $s = 4$, $t = 3$

4.
$$2a + 4b + c = 5$$

 $a - 4b = -6$
 $2b + c = 7$

$$a = -2$$
, $b = 1$, $c = 5$

5.
$$2x + y - z = -5$$

 $4x - 2y + z = 10$
 $2x + 3y + 2z = 3$

$$x = \frac{1}{2}$$
, $y = -2$, $z = 4$

6.
$$r + 3s + t = 3$$

 $2r - 3s + 2t = 3$
 $-r + 3s - 3t = 1$

$$r = 3$$
, $s = \frac{1}{3}$, $t = -1$