Linear Functions & Equations

- 1. A function assigns the inputs and corresponding outputs shown in the table below.
- a) Does the function appear to be linear? Check at least three pairs of inputs and their corresponding outputs.

Input	Output
-2	3
8	-2
10	-3
20	-8

b) Can you write a linear equation that describes the function?

Linear Functions & Equations

- 1. A function assigns the inputs and corresponding outputs shown in the table below.
- a) Does the function appear to be linear? Check at least three pairs of inputs and their corresponding outputs.

Input	Output
-2	3
8	-2
10	-3
20	-8

$$\frac{3 - (-2)}{-2 - 8} = \frac{5}{-10} = -\frac{1}{2}$$

$$\frac{-2 - (-3)}{8 - 10} = \frac{1}{-2} = -\frac{1}{2}$$

$$\frac{-3 - (-8)}{10 - 20} = \frac{5}{-10} = -\frac{1}{2}$$

Yes. The rate of change is the same when I check pairs of inputs and corresponding outputs. Each time it is equal to $-\frac{1}{2}$. Since the rate of change is the same for at least these three examples, the function could well be linear.

b) Can you write a linear equation that describes the function?

We suspect we have an equation of the form $y = -\frac{1}{2}x + b$.

Using the assignment of 3 to -2:

$$3 = -\frac{1}{2}(-2) + b$$
$$3 = 1 + b$$
$$2 = b$$

The equation that describes the function might be $y = -\frac{1}{2}x + 2$.

Checking: When x = -2, we get $y = -\frac{1}{2}(-2) + 2 = 3$. When x = 8, we get $y = -\frac{1}{2}(8) + 2 = -2$. When x = 10, we get $y = -\frac{1}{2}(10) + 2 = -3$. When x = 20, we get $y = -\frac{1}{2}(20) + 2 = -8$.

It works.