Number Properties

Recall the following rules of exponents:

$$x^a \cdot x^b = x^{a+b}$$

$$\frac{x^a}{x^b} = x^{a-b} \qquad (x^a)^b = x^{ab}$$

$$(xy)^a = x^a y^a \qquad (\frac{x}{y})^a = \frac{x^a}{y^a}$$

Here x, y, a, and b are real numbers with x and y nonzero.

Replace each of the following expressions with an equivalent expression in which the variable of the expression appears only once with a positive number for its exponent.

(For example, $\frac{7}{b^2} \cdot b^{-4}$ is equivalent to $\frac{7}{b^6}$.)

a)
$$(16x^2) \div (16x^5)$$
 d) $((25w^4) \div (5w^3)) \div (5w^{-7})$

b)
$$(2x)^4(2x)^3$$
 e) $(25w^4) \div ((5w^3) \div (5w^{-7}))$

c)
$$(9\mathbf{z}^{-2})(3\mathbf{z}^{-1})^{-3}$$

Number Properties

Recall the following rules of exponents:

$$x^a \cdot x^b = x^{a+b}$$

$$\frac{x^a}{x^b} = x^{a-b} \qquad (x^a)^b = x^{ab}$$

$$(x^a)^b = x^{ab}$$

$$(x^a)^b = x^{ab}$$

$$(x^a)^b = x^{ab}$$

$$(x^a)^b = x^{ab}$$

Here x, y, a, and b are real numbers with x and y nonzero.

Replace each of the following expressions with an equivalent expression in which the variable of the expression appears only once with a positive number for its exponent.

(For example, $\frac{7}{b^2} \cdot b^{-4}$ is equivalent to $\frac{7}{b^6}$.)

a)
$$(16x^2) \div (16x^5)$$

 $\frac{1}{x^3}$
 d) $\left((25w^4) \div (5w^3)\right) \div (5w^{-7})$

b)
$$(2x)^4(2x)^3$$
 e) $(25w^4) \div ((5w^3) \div (5w^{-7}))$
$$\frac{25}{w^6}$$

c)
$$(9z^{-2})(3z^{-1})^{-3}$$
 $\frac{z}{3}$