Using Radicals to Solve Equations

1. Solve $x^2 - 14 = 5x + 67 - 5x$.

2. Solve and simplify: x(x - 1) = 121 - x.

3. A square has a side length of 3x inches and an area of $324 in^2$. What is the value of x?

Go to <u>onlinemathlearning.com</u> for more free math resources

Using Radicals to Solve Equations

1. Solve
$$x^2 - 14 = 5x + 67 - 5x$$
.

$$x^{2} - 14 = 5x + 67 - 5x$$

$$x^{2} - 14 = 67$$

$$x^{2} - 14 + 14 = 67 + 14$$

$$x^{2} = 81$$

$$\sqrt{x^{2}} = \pm\sqrt{81}$$

$$x = \pm\sqrt{81}$$

$$x = \pm9$$

Check:

$$9^{2} - 14 = 5(9) + 67 - 5(9)$$

$$81 - 14 = 45 + 67 - 45$$

$$67 = 67$$

$$(-9)^{2} - 14 = 5(-9) + 67 - 5(-9)$$

$$81 - 14 = -45 + 67 + 45$$

$$67 = 67$$

2. Solve and simplify: x(x-1) = 121 - x.

$$x(x-1) = 121 - x$$

$$x^{2} - x = 121 - x$$

$$x^{2} - x + x = 121 - x + x$$

$$x^{2} = 121$$

$$\sqrt{x^{2}} = \pm \sqrt{121}$$

$$x = \pm \sqrt{121}$$

$$x = \pm 11$$
Check:
11(11-1) = 121 - 11
11(10) = 110
110 = 110
-11(-11-1) = 121 - (-11)
-11(-12) = 121 + 11
132 = 132

3. A square has a side length of 3x inches and an area of $324 in^2$. What is the value of x?

$(3x)^2 = 3243^2$		
$x^2 = 324$	Check:	
$9x^2 = 324$		
$9x^2$ 324		$(3(6))^2 = 324$
$\frac{1}{9} = \frac{1}{9}$		$18^2 = 324$
$x^2 = 36$		324 = 324
$\sqrt{x^2} = \sqrt{36}$		
x = 6		

A negative number would not make sense as a length, so x = 6.

Go to <u>onlinemathlearning.com</u> for more free math resources