Cube Roots

1. A cube has a volume of $64 in^3$. What is the measure of one of its sides? Write and solve an equation.

2. What value of x makes the following equation true: $125 = x^3$?

3. Find the value of x that makes the equation true: $x^3 = 1000^{-1}$

Cube Roots

1. A cube has a volume of $64 in^3$. What is the measure of one of its sides? Write and solve an equation.

$$x^{3} = 64$$

$$\sqrt[3]{x^{3}} = \sqrt[3]{64}$$

$$x = \sqrt[3]{64}$$

$$x = 4$$

Check:
$$4^3 = 64$$

 $64 = 64$

2. What value of x makes the following equation true: $125 = x^3$?

$$125 = x^3$$

$$\sqrt[3]{125} = \sqrt[3]{x^3}$$

$$\sqrt[3]{125} = x$$

$$5 = x$$

Check:
$$125 = 5^3$$
 $125 = 125$

3. Find the value of x that makes the equation true: $x^3 = 1000^{-1}$

$$x^{3} = 1000^{-1}$$

$$\sqrt[3]{x^{3}} = \sqrt[3]{1000^{-1}}$$

$$x = \sqrt[3]{1000^{-1}}$$

$$x = \sqrt[3]{\frac{1}{1000}}$$

$$x = \frac{1}{10}$$

$$x = 10^{-1}$$

$$1000 - 1000$$

$$1000^{-1} = 1000^{-1}$$