## Composite Area Problems Worksheets

1. The figure shows a semicircle and a square. Find the area of the shaded region. Use 3.14 for $\pi$.

2. The figure shows two semicircles and a quarter of a circle. Find the area of the shaded region. Use 3.14 for $\pi$.

3. Jillian is making a paper flower motif for an art project. The flower she is making has four petals; each petal is formed by three semicircles as shown below. What is the area of the paper flower? Provide your answer in terms of $\pi$.


## Composite Area Problems Worksheets

1. The figure shows a semicircle and a square. Find the area of the shaded region. Use 3.14 for $\pi$.


$$
\begin{aligned}
& \text { Area of the square - area of the semicircle } \\
& (24 \mathrm{~cm} \times 24 \mathrm{~cm})-\left(\frac{1}{2}\right)\left(\pi \times(12 \mathrm{~cm})^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
576 \mathrm{~cm}^{2}-\left(\frac{1}{2}\right)\left(3.14 \times 144 \mathrm{~cm}^{2}\right) \\
576 \mathrm{~cm}^{2}-226.08 \mathrm{~cm}^{2} \\
349.92 \mathrm{~cm}^{2}
\end{gathered}
$$

The area is approximately $349.92 \mathrm{~cm}^{2}$.
2. The figure shows two semicircles and a quarter of a circle. Find the area of the shaded region. Use 3.14 for $\pi$.

Area of two semicircles + area of quarter of the larger circle.


$$
\begin{aligned}
& 2\left(\frac{1}{2}\right)\left(\pi \times(5 \mathrm{~cm})^{2}\right)+\left(\frac{1}{4}\right)\left(\pi \times(10 \mathrm{~cm})^{2}\right) \\
& (3.14)\left(25 \mathrm{~cm}^{2}\right)+(3.14)\left(25 \mathrm{~cm}^{2}\right) \\
& 78.5 \mathrm{~cm}^{2}+78.5 \mathrm{~cm}^{2} \\
& 157 \mathrm{~cm}^{2}
\end{aligned}
$$

The area is approximately $157 \mathrm{~cm}^{2}$.
3. Jillian is making a paper flower motif for an art project. The flower she is making has four petals; each petal is formed by three semicircles as shown below. What is the area of the paper flower? Provide your answer in terms of $\pi$.


Area of medium semicircle + (area of larger semicircle - area of small semicircle)

$$
\begin{aligned}
& \left(\frac{1}{2}\right)\left(\pi \times(6 \mathrm{~cm})^{2}\right) \\
& +\left(\left(\frac{1}{2}\right)\left(\pi \times(9 \mathrm{~cm})^{2}\right)-\left(\frac{1}{2}\right)\left(\pi \times(3 \mathrm{~cm})^{2}\right)\right) \\
& 18 \pi \mathrm{~cm}^{2}+40.5 \pi \mathrm{~cm}^{2}-4.5 \pi \mathrm{~cm}^{2}=54 \pi \mathrm{~cm}^{2} \\
& \quad 54 \pi \mathrm{~cm}^{2} \times 4 \\
& 216 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

The area is $216 \pi \mathrm{~cm}^{2}$.

