DATE

PERIOD

Unit 7, Lesson 9: Drawing Triangles (Part 1)

Let's see how many different triangles we can draw with certain measurements.

9.1: Which One Doesn't Belong: Triangles

Which one doesn't belong?

PERIOD

9.2: Does Your Triangle Match Theirs?

Three students have each drawn a triangle. For each description:

- 1. Draw a triangle with the given measurements.
- 2. Measure and label the other side lengths and angle measures in your triangle.
- 3. Decide whether the triangle you drew must be an identical copy of the triangle that the student drew. Explain your reasoning.

DATE

• Jada's triangle has one angle measuring 75°.

• Andre's triangle has one angle measuring 75° and one angle measuring 45°.

m.openup.org/1/7-7-9-2

NAME DATE PERIOD

• Lin's triangle has one angle measuring 75°, one angle measuring 45°, and one side measuring 5 cm.

9.3: How Many Can You Draw?

- 1. Draw as many different triangles as you can with each of these sets of measurements:
 - a. Two angles measure 60° , and one side measures 4 cm.

🖄 OPEN·UP

DATE

PERIOD

b. Two angles measure 90°, and one side measures 4 cm.

NAME

c. One angle measures 60° , one angle measures 90° , and one side measures 4 cm.

2. Which of these sets of measurements determine one unique triangle? Explain or show your reasoning.

In the diagram, 9 toothpicks are used to make three equilateral triangles. Figure out a way to move only 3 of the toothpicks so that the diagram has exactly 5 equilateral triangles.

Lesson 9 Summary

Sometimes, we are given two different angle measures and a side length, and it is impossible to draw a triangle. For example, there is no triangle with side length 2 and angle measures 120° and 100°:

Sometimes, we are given two different angle measures and a side length between them, and we *can* draw a unique triangle. For example, if we draw a triangle with a side length of 4 between angles 90° and 60°, there is only one way they can meet up and complete to a triangle:

Any triangle drawn with these three conditions will be identical to the one above, with the same side lengths and same angle measures.

NAME

DATE

PERIOD

Unit 7, Lesson 9: Drawing Triangles (Part 1)

1. Use a protractor to try to draw each triangle. Which of these three triangles is impossible to draw?

- a. A triangle where one angle measures 20° and another angle measures 45°
- b. A triangle where one angle measures 120° and another angle measures 50°
- c. A triangle where one angle measures 90° and another angle measures 100°

- 2. A triangle has an angle measuring 90°, an angle measuring 20°, and a side that is 6 units long. The 6-unit side is in between the 90° and 20° angles.
 - a. Sketch this triangle and label your sketch with the given measures.
 - b. How many unique triangles can you draw like this?
- 3. a. Find a value for *x* that makes -*x* less than 2*x*.
 - b. Find a value for *x* that makes -*x* greater than 2*x*.

(from Unit 5, Lesson 13)

DATE	PERIOD

4. One of the particles in atoms is called an electron. It has a charge of -1. Another particle in atoms is a proton. It has charge of +1.

The overall charge of an atom is the sum of the charges of the electrons and the protons. Here is a list of common elements.

	charge from electrons	charge from protons	overall charge
carbon	-6	+6	0
aluminum	-10	+13	
phosphide	-18	+15	
iodide	-54	+53	
tin	-50	+50	

Find the overall charge for the rest of the atoms on the list.

(from Unit 5, Lesson 3)

NAME

5. A factory produces 3 bottles of sparkling water for every 7 bottles of plain water. If those are the only two products they produce, what percentage of their production is sparkling water? What percentage is plain?

(from Unit 4, Lesson 3)