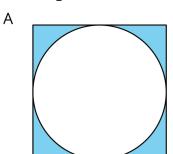

Unit 3, Lesson 9: Applying Area of Circles

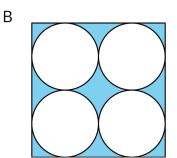
Let's find the areas of shapes made up of circles.

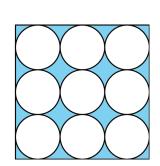
9.1: Still Irrigating the Field

The area of this field is about 500,000 m². What is the field's area to the nearest square meter? Assume that the side lengths of the square are exactly 800 m.

- A. 502,400 m²
- B. 502,640 m²
- C. 502,655 m²
- D. 502,656 m²
- E. 502,857 m²

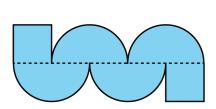


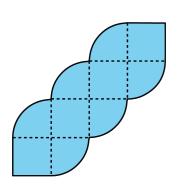

C


NAME DATE PERIOD

9.2: Comparing Areas Made of Circles

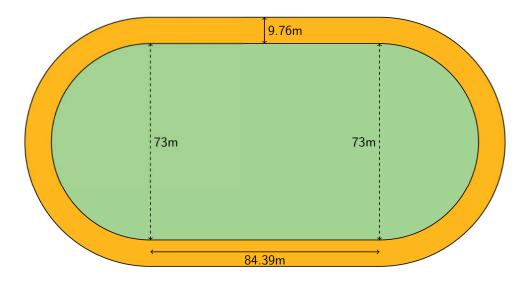
1. Each square has a side length of 12 units. Compare the areas of the shaded regions in the 3 figures. Which figure has the largest shaded region? Explain or show your reasoning.





2. Each square in Figures D and E has a side length of 1 unit. Compare the area of the two figures. Which figure has more area? How much more? Explain or show your reasoning.

Ε



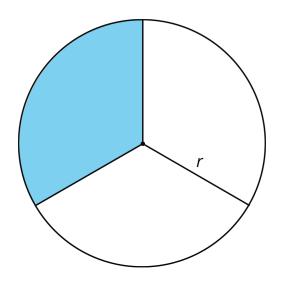
Are you ready for more?

Which figure has a longer perimeter, Figure D or Figure E? How much longer?

9.3: The Running Track Revisited

The field inside a running track is made up of a rectangle 84.39 m long and 73 m wide, together with a half-circle at each end. The running lanes are 9.76 m wide all the way around.

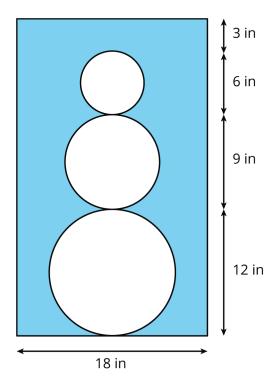
What is the area of the running track that goes around the field? Explain or show your reasoning.



Lesson 9 Summary

The relationship between A, the area of a circle, and r, its radius, is $A=\pi r^2$. We can use this to find the area of a circle if we know the radius. For example, if a circle has a radius of 10 cm, then the area is $\pi \cdot 10^2$ or 100π cm². We can also use the formula to find the radius of a circle if we know the area. For example, if a circle has an area of 49π m² then its radius is 7 m and its diameter is 14 m.

Sometimes instead of leaving π in expressions for the area, a numerical approximation can be helpful. For the examples above, a circle of radius 10 cm has area about 314 cm². In a similar way, a circle with area 154 m² has radius about 7 m.

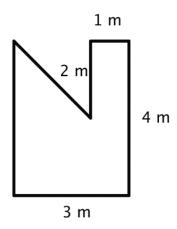

We can also figure out the area of a fraction of a circle. For example, the figure shows a circle divided into 3 pieces of equal area. The shaded part has an area of $\frac{1}{3}\pi r^2$.

Unit 3, Lesson 9: Applying Area of Circles

- 1. A circle with a 12 inch diameter is folded in half and then folded in half again. What is the area of the resulting shape?
- 2. Find the area of the shaded region. Express your answer in terms of π .

3. The face of a clock has a circumference of 63 in. What is the area of the face of the clock?

(from Unit 3, Lesson 8)


- 4. Which of these pairs of quantities are proportional to each other? For the quantities that are proportional, what is the constant of proportionality?
 - a. Radius and diameter of a circle
 - b. Radius and circumference of a circle
 - c. Radius and area of a circle

- d. Diameter and circumference of a circle
- e. Diameter and area of a circle

(from Unit 3, Lesson 7)

5. Find the area of this shape in two different ways.

(from Unit 3, Lesson 6)

- 6. Elena and Jada both read at a constant rate, but Elena reads more slowly. For every 4 pages that Elena can read, Jada can read 5.
 - a. Complete the table.

pages read by Elena	pages read by Jada
4	5
1	
9	
S	
	15
	j

- b. Here is an equation for the table: j=1.25e. What does the 1.25 mean?
- c. Write an equation for this relationship that starts $e=\dots$

(from Unit 2, Lesson 5)