DATE

PERIOD

Unit 6, Lesson 15: Equivalent Exponential Expressions

Let's investigate expressions with variables and exponents.

15.1: Up or Down?

- 1. Find the values of 3^x and $\left(\frac{1}{3}\right)^x$ for different values of *x*.
- 2. What patterns do you notice?

different values of *x*.

x	3 ^{<i>x</i>}	$\left(\frac{1}{3}\right)^x$
1		
2		
3		
4		

15.2: What's the Value?

Evaluate each expression for the given value of *x*.

- 1. 3*x*² when *x* is 10
- 2. $3x^2$ when *x* is $\frac{1}{9}$
- 3. $\frac{x^3}{4}$ when *x* is 4
- 4. $\frac{x^3}{4}$ when *x* is $\frac{1}{2}$
- 5. 9 + x^7 when *x* is 1
- 6. 9 + x^7 when x is $\frac{1}{2}$

DATE

PERIOD

15.3: Exponent Experimentation

Find a solution to each equation in the list that follows. (Numbers in the list may be a solution to more than one equation, and not all numbers in the list will be used.)

1. $64 = x^2$ 2. $64 = x^3$ 3. $2^x = 32$ 4. $x = \left(\frac{2}{5}\right)^3$ 5. $\frac{16}{9} = x^2$ 6. $2 \cdot 2^5 = 2^x$ 7. $2x = 2^4$ 8. $4^3 = 8^x$ List:

8	6	5	8	1	4	2	2	Λ	5	6	Q
125	15	8	9	I	3	2	5	4	J	0	0

Are you ready for more?

This fractal is called a Sierpinski Tetrahedron. A tetrahedron is a polyhedron that has four faces. (The plural of tetrahedron is tetrahedra.)

The small tetrahedra form four medium-sized tetrahedra: blue, red, yellow, and green. The medium-sized tetrahedra form one large tetrahedron.

- 1. How many small faces does this fractal have? Be sure to include faces you can't see as well as those you can. Try to find a way to figure this out so that you don't have to count every face.
- 2. How many small tetrahedra are in the bottom layer, touching the table?

- 3. To make an even bigger version of this fractal, you could take four fractals like the one pictured and put them together. Explain where you would attach the fractals to make a bigger tetrahedron.
- 4. How many small faces would this bigger fractal have? How many small tetrahedra would be in the bottom layer?
- 5. What other patterns can you find?

Lesson 15 Summary

NAME

In this lesson, we saw expressions that used the letter *x* as a variable. We evaluated these expressions for different values of *x*.

- To evaluate the expression $2x^3$ when x is 5, we replace the letter x with 5 to get $2 \cdot 5^3$. This is equal to $2 \cdot 125$ or just 250. So the value of $2x^3$ is 250 when x is 5.
- To evaluate $\frac{x^2}{8}$ when x is 4, we replace the letter x with 4 to get $\frac{4^2}{8} = \frac{16}{8}$, which equals 2. So $\frac{x^2}{8}$ has a value of 2 when x is 4.

We also saw equations with the variable *x* and had to decide what value of *x* would make the equation true.

• Suppose we have an equation $10 \cdot 3^x = 90$ and a list of possible solutions: 1, 2, 3, 9, 11. The only value of x that makes the equation true is 2 because $10 \cdot 3^2 = 10 \cdot 3 \cdot 3$, which equals 90. So 2 is the solution to the equation.

Unit 6: Expressions and Equations Lesson 15: Equivalent Exponential Expressions

1

Unit 6, Lesson 15: Equivalent Exponential Expressions

- 1. Evaluate the following expressions if x = 3.
 - a. 2^{x} c. 1^{x} e. $\left(\frac{1}{2}\right)^{x}$ b. x^{2} d. x^{1}
- 2. Evaluate each expression for the given value of *x*.
 - a. $2 + x^3$, x is 3 b. x^2 , x is $\frac{1}{2}$ c. $3x^2$, x is 5 d. $100 - x^2$, x is 6
- 3. Decide if the expressions have the same value. If not, determine which expression has the larger value.
 - a. 2^3 and 3^2 b. 1^{31} and 31^1 c. 4^2 and 2^4 d. $(\frac{1}{2})^3$ and $(\frac{1}{3})^2$
- 4. Match each equation to its solution.
 - A. $7 + x^2 = 16$ 1. x = 4
 - B. $5 x^2 = 1$ 2. x = 1
 - C. $2 \cdot 2^3 = 2^x$ 3. x = 2
 - D. $\frac{3^4}{3^x} = 27$ 4. x = 3

DATE

PERIOD

5. An adult pass at the amusement park costs 1.6 times as much as a child's pass.

a. How many dollars does an adult pass cost if a child's pass costs:

\$5? \$10? w

b. A child's pass costs \$15. How many dollars does an adult pass cost?

(from Unit 6, Lesson 6)

6. Jada reads 5 pages every 20 minutes. At this rate, how many pages can she read in 1 hour?

- a. Use a double number line to find the answer.

b. Use a table to find the ans

pages read	time in minutes		
5	20		

c. Explain which strategy you thinks works better in finding the answer.

(from Unit 2, Lesson 14)