DATE

PERIOD

Unit 6, Lesson 5: A New Way to Interpret *a* over *b*

Let's investigate what a fraction means when the numerator and denominator are not whole numbers.

5.1: Recalling Ways of Solving

Solve each equation. Be prepared to explain your reasoning.

1.0.07 = 10m 2.10.1 = t + 7.2

5.2: Interpreting $\frac{a}{b}$

Solve each equation.

1. 35 = 7x 2. 35 = 11x 3. 7x = 7.7

4.
$$0.3x = 2.1$$
 5. $\frac{2}{5} = \frac{1}{2}x$

Are you ready for more?

Solve the equation. Try to find some shortcuts.

$$\frac{1}{6} \cdot \frac{3}{20} \cdot \frac{5}{42} \cdot \frac{7}{72} \cdot x = \frac{1}{384}$$

Unit 6: Expressions and Equations Lesson 5: A New Way to Interpret a over b

DATE

PERIOD

5.3: Storytime Again

NAME

Take turns with your partner telling a story that might be represented by each equation. Then, for each equation, choose one story, state what quantity x describes, and solve the equation. If you get stuck, draw a diagram.

1. 0.7 +
$$x = 12$$
 2. $\frac{1}{4}x = \frac{3}{2}$

Lesson 5 Summary

In the past, you learned that a fraction such as $\frac{4}{5}$ can be thought of in a few ways.

- $\frac{4}{5}$ is a number you can locate on the number line by dividing the section between 0 and 1 into 5 equal parts and then counting 4 of those parts to the right of 0.
- $\frac{4}{5}$ is the share that each person would have if 4 wholes were shared equally among 5 people. This means that $\frac{4}{5}$ is the result of *dividing* 4 by 5.

We can extend this meaning of *a fraction as a division* to fractions whose numerators and denominators are not whole numbers. For example, we can represent 4.5 pounds of rice divided into portions that each weigh 1.5 pounds as: $\frac{4.5}{1.5} = 4.5 \div 1.5 = 3$.

Fractions that involve non-whole numbers can also be used when we solve equations.

Suppose a road under construction is $\frac{3}{8}$ finished and the length of the completed part is $\frac{4}{3}$ miles. How long will the road be when completed? We can write the equation $\frac{3}{8}x = \frac{4}{3}$ to represent the situation and solve the equation. The completed road will be $3\frac{5}{9}$ or about 3.6 miles long.

 $\frac{3}{8}x = \frac{4}{3}$ $x = \frac{\frac{4}{3}}{\frac{3}{\frac{8}{8}}}$ $x = \frac{4}{3} \cdot \frac{8}{3}$ $x = \frac{32}{9} = 3\frac{5}{9}$

NAME

DATE

PERIOD

Unit 6, Lesson 5: A New Way to Interpret *a* over *b*

1. Select **all** the expressions that equal $\frac{3.15}{0.45}$.

A. $(3.15) \cdot (0.45)$ B. $(3.15) \div (0.45)$ C. $(3.15) \cdot \frac{1}{0.45}$ D. $(3.15) \div \frac{45}{100}$ E. $(3.15) \cdot \frac{100}{45}$ F. $\frac{0.45}{3.15}$

2. Which expressions are solutions to the equation $\frac{3}{4}x = 15$? Select **all** that apply.

A. $\frac{15}{\frac{3}{4}}$ B. $\frac{15}{\frac{4}{3}}$ C. $\frac{4}{3} \cdot 15$ D. $\frac{3}{4} \cdot 15$ E. $15 \div \frac{3}{4}$

3. Solve each equation.

a. $4x = 32$ b. $4 = 32x$ c. $10x = 2$	26 d. $26 = 100x$
--	-------------------

4. For each equation, write a story problem represented by the equation. For each equation, state what quantity *x* represents. If you get stuck, draw a diagram.

DATE	PERIOD
15 (
1.5x = 6	
	DATE $1.5x = 6$

5. Write as many mathematical expressions or equations as you can about the image. Include a fraction, a decimal number, or a percentage in each.

(from Unit 3, Lesson 13)

- 6. In a lilac paint mixture, 40% of the mixture is white paint, 20% is blue, and the rest is red. There are 4 cups of blue paint used in a batch of lilac paint.
 - a. How many cups of white paint are used?
 - b. How many cups of red paint are used?
 - c. How many cups of lilac paint will this batch yield?

If you get stuck, consider using a tape diagram.

(from Unit 3, Lesson 12)

7. Triangle P has a base of 12 inches and a corresponding height of 8 inches. Triangle Q has a base of 15 inches and a corresponding height of 6.5 inches. Which triangle has a greater area? Show your

NAME

DATE

PERIOD

reasoning.

(from Unit 1, Lesson 9)