PERIOD

Unit 6, Lesson 1: Tape Diagrams and Equations

Let's see how tape diagrams and equations can show relationships between amounts.

1.1: Which Diagram is Which?

Here are two diagrams. One represents 2 + 5 = 7. The other represents $5 \cdot 2 = 10$. Which is which? Label the length of each diagram.

Draw a diagram that represents each equation.

1.4 + 3 = 7

2. 4 · 3 = 12

1.2: Match Equations and Tape Diagrams

Here are two tape diagrams. Match each equation to one of the tape diagrams.

N	Δ	N	1	F
IN		١v	I.	

PERIOD

1.3: Draw Diagrams for Equations

For each equation, draw a diagram and find the value of the unknown that makes the equation true.

1. 18 = 3 + x

2. $18 = 3 \cdot y$

Are you ready for more?

You are walking down a road, seeking treasure. The road branches off into three paths. A guard stands in each path. You know that only one of the guards is telling the truth, and the other two are lying. Here is what they say:

- Guard 1: The treasure lies down this path.
- Guard 2: No treasure lies down this path; seek elsewhere.
- Guard 3: The first guard is lying.

Which path leads to the treasure?

PERIOD

Lesson 1 Summary

Tape diagrams can help us understand relationships between quantities and how operations describe those relationships.

Diagram A has 3 parts that add to 21. Each part is labeled with the same letter, so we know the three parts are equal. Here are some equations that all represent diagram A:

x + x + x = 21	Notice that the number 3 is not seen in the
x + x + x = 21	diagram; the 3 comes from counting 3 boxes
$3 \cdot x = 21$	representing 3 equal parts in 21.
$x = 21 \div 3$	Ma and the discussion of the equations
1	we can use the diagram of any of the equations
$x = \frac{1}{3} \cdot 21$	to reason that the value of x is 7.

Diagram B has 2 parts that add to 21. Here are some equations that all represent diagram B:

y + 2 = 21	We can use the diagram or any of the equations
y + 5 = 21	to reason that the value of <i>y</i> is 18.
y = 21 - 3	
3 = 21 - y	

PERIOD

Unit 6, Lesson 1: Tape Diagrams and Equations

1. Here is an equation: x + 4 = 17

- a. Draw a tape diagram to represent the equation.
- b. Which part of the diagram shows the quantity *x*? What about 4? What about 17?

c. How does the diagram show that x + 4 has the same value as 17?

2. Diego is trying to find the value of x in 5 \cdot x = 35. He draws this diagram but is not certain how to proceed.

x x x x x

- a. Complete the tape diagram so it represents the equation $5 \cdot x = 35$.
- b. Find the value of *x*.
- 3. For each equation, draw a tape diagram and find the unknown value.

a.
$$x + 9 = 16$$
 b. $4 \cdot x = 28$

4. Match each equation to one of the two tape diagrams.

5. A shopper paid \$2.52 for 4.5 pounds of potatoes, \$7.75 for 2.5 pounds of broccoli, and \$2.45 for 2.5 pounds of pears. What is the unit price of each item she bought? Show your reasoning.

(from Unit 5, Lesson 13)

6. A sports drink bottle contains 16.9 fluid ounces. Andre drank 80% of the bottle. How many fluid ounces did Andre drink? Show your reasoning.

(from Unit 3, Lesson 14)

7. The daily recommended allowance of calcium for a sixth grader is 1,200 mg. One cup of milk has 25% of the recommended daily allowance of calcium. How many milligrams of calcium are in a cup of milk? If you get stuck, consider using the double number line.

calcium (mg)	0	1200
calcium (mg)		
	- <u>+</u>	>
	0	100%

NAME

DATE

PERIOD

(from Unit 3, Lesson 11)