DATE

PERIOD

Unit 5, Lesson 11: Dividing Numbers that Result in Decimals

Let's find quotients that are not whole numbers.

11.1: Number Talk: Evaluating Quotients

Find the quotients mentally.

 $16 \div 8$

 $496 \div 8$

11.2: Keep Dividing

Here is how Mai used base-ten diagrams to calculate $62 \div 5$.

She started by representing 62.

She then made 5 groups, each with 1 ten. There was 1 ten left. She unbundled it into 10 ones and distributed the ones across the 5 groups.

Here is her diagram for $62 \div 5$.

NAME		DATE	PERIOD
	tens	ones	tenths

1. Discuss these questions with a partner and write down your answers:

a. Mai should have a total of 12 ones, but her diagram shows only 10. Why?

b. She did not originally have tenths, but in her diagram each group has 4 tenths. Why?

c. What value has Mai found for $62 \div 5$? Explain your reasoning.

DATE

PERIOD

2. Find the quotient of $511 \div 5$ by drawing base-ten diagrams or by using the partial quotients method. Show your reasoning. If you get stuck, work with your partner to find a solution.

NAME

3. Four students share a \$271 prize from a science competition. How much does each student get if the prize is shared equally? Show your reasoning.

NAME

PERIOD

11.3: Using Long Division to Calculate Quotients

1. Here is how Lin calculated $62 \div 5$.

Lin set up the numbers for long division.	She subtracted 5 times 1 from the 6, which leaves a remainder of 1.	Lin drew a vertical line and a decimal point, separating the ones and tenths place.	Lastly, she subtracted 5 times 4 from 20, which left no remainder.	
	She wrote the 2 from 62 next to the 1, which made 12, and subtracted 5 times 2 from 12.	12 – 10 is 2. She wrote 0 to the right of the 2, which made 20.	At the top, she wrote 4 next to the decimal point.	
5/62	$ \begin{array}{r} 1 \\ 5 \ \hline 6 \ 2 \\ - 5 \\ \hline 1 \ 2 \\ - 1 \ 0 \\ \end{array} $	$ \begin{array}{r} 1 & 2 \\ 5 & \sqrt{6} & 2 \\ & -5 \\ \hline & 1 & 2 \\ & -1 & 0 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
	2	2 0	2 0	
			- 2 0	
			0	

Discuss with your partner:

- Lin put a 0 after the remainder of 2. Why? Why does this 0 not change the value of the quotient?
- Lin subtracted 5 groups of 4 from 20. What value does the 4 in the quotient represent?
- \circ What value did Lin find for 62 \div 5?
- 2. Use long division to find the value of each expression. Then pause so your teacher can review your work.

a.
$$126 \div 8$$
 b. $90 \div 12$

NAME		DATE	PERIOD	
	3. Use long division to show that:			
	a. $5 \div 4$, or $\frac{5}{4}$, is 1.25.	c. 1	÷ 8, or $\frac{1}{8}$, is 0.125.	

b. $4 \div 5$, or $\frac{4}{5}$, is 0.8.

d. 1 ÷ 25, or $\frac{1}{25}$, is 0.04.

4. Noah said we cannot use long division to calculate $10 \div 3$ because there will always be a remainder.

a. What do you think Noah meant by "there will always be a remainder"?

b. Do you agree with his statement? Why or why not?

DATE

PERIOD

Lesson 11 Summary

NAME

Dividing a whole number by another whole number does not always produce a wholenumber quotient. Let's look at $86 \div 4$, which we can think of as dividing 86 into 4 equal groups.

We can see in the base-ten diagram that there are 4 groups of 21 in 86 with 2 ones left over. To find the quotient, we need to distribute the 2 ones into the 4 groups. To do this, we can unbundle or decompose the 2 ones into 20 tenths, which enables us to put 5 tenths in each group.

Once the 20 tenths are distributed, each group will have 2 tens, 1 one, and 5 tenths, so $86 \div 4 = 21.5$.

We can also calculate $86 \div 4$ using long division.

The calculation shows that, after removing 4 groups of 21, there are 2 ones remaining. We can continue dividing by writing a 0 to the right of the 2 and thinking of that remainder as 20 tenths, which can then be divided into 4 groups.

To show that the quotient we are working with now is in the tenth place, we put a decimal point to the right of the 1 (which is in the ones place) at the top. It may also be helpful to draw a vertical line to separate the ones and the tenths.

There are 4 groups of 5 tenths in 20 tenths, so we write 5 in the tenths place at the top. The calculation likewise shows $86 \div 4 = 21.5$.

NAME

DATE

PERIOD

Unit 5, Lesson 11: Dividing Numbers that Result in Decimals

1. Use long division to show that the fraction and decimal in each pair are equal.

a. $\frac{3}{4}$ and 0.75	b. $\frac{3}{50}$ and 0.06	c. $\frac{7}{25}$ and 0.28
---------------------------	----------------------------	----------------------------

2. Mai walked $\frac{1}{8}$ of a 30-mile walking trail. How many miles did Mai walk? Explain or show your reasoning.

- 3. Use long division to find each quotient. Write your answer as a decimal.
 - a. 99 ÷ 12 b. 216 ÷ 5 c. 1,988 ÷ 8

NAME	DATE	PERIOD

- 4. To find the decimal of $\frac{9}{25}$, Tyler reasoned: " $\frac{9}{25}$ is equivalent to $\frac{18}{50}$ and to $\frac{36}{100}$, so the decimal of $\frac{9}{25}$ is 0.36."
 - a. Use long division to show that Tylerb. Is the decimal of $\frac{18}{50}$ also 0.36? Use long division to
support your answer.

5. Complete the calculations so that each shows the correct difference.

⁽from Unit 5, Lesson 4)

6. Use the equation $124 \cdot 15 = 1,860$ and what you know about fractions, decimals, and place value to explain how to place the decimal point when you compute $(1.24) \cdot (0.15)$.

(from Unit 5, Lesson 6)