PERIOD

Unit 5, Lesson 9: Using the Partial Quotients Method

Let's divide whole numbers.

9.1: Using Base-Ten Diagrams to Calculate Quotients

Elena used base-ten diagrams to find $372 \div 3$. She started by representing 372.

She made 3 groups, each with 1 hundred. Then, she put the tens and ones in each of the 3 groups. Here is her diagram for $372 \div 3$.

hundreds	tens	ones

Discuss with a partner:

- Elena's diagram for 372 has 7 tens. The one for $372 \div 3$ has only 6 tens. Why?
- Where did the extra ones (small squares) come from?

PERIOD

9.2: Using the Partial Quotients Method to Calculate Quotients

1. Andre calculated $657 \div 3$ using a method that was different from Elena's.

He started by writing the dividend (657) and the divisor (3).	He then subtracted 3 groups of different amounts from 657, starting with 3 groups	then 3 groups of 10, and then 3 groups of 9.	Andre calculated 200 + 10 + 9 and then wrote 219.			
	01 200		2 1 9			
		9	9			
		1 0	1 0			
	2 0 0	2 0 0	2 0 0			
3 / 6 5 7	3 / 6 5 7	3 / 6 5 7	3 / 6 5 7			
	- 6 0 0	- 6 0 0	- 6 0 0			
	5 7	5 7	5 7			
		- 3 0	- 3 0			
		2 7	2 7			
		- 2 7	- 2 7			
		0	0			

Discuss the following questions with a partner:

- Andre subtracted 600 from 657. What does the 600 represent?
- Andre wrote 10 above the 200, and then subtracted 30 from 57. How is the 30 related to the 10?
- What do the numbers 200, 10, and 9 represent?
- $\circ\,$ What is the meaning of the 0 at the bottom of Andre's work?
- 2. How might Andre calculate $896 \div 4$? Explain or show your reasoning.

DATE

PERIOD

9.3: What's the Quotient?

1. Find the quotient of $1,332 \div 9$ using one of the methods you have seen so far. Show your reasoning.

2. Find each quotient and show your reasoning. Use the partial quotients method at least once.

PERIOD

Lesson 9 Summary

NAME

We can find the quotient $345 \div 3$ in different ways.

One way is to use a base-ten diagram to represent the hundreds, tens, and ones and to create equal-sized groups.

We can think of the division by 3 as splitting up 345 into 3 equal groups.

Each group has 1 hundred, 1 ten, and 5 ones, so $345 \div 3 = 115$. Notice that in order to split 345 into 3 equal groups, one of the tens had to be unbundled or decomposed into 10 ones.

~	CRADE & MATHEMATICS
OPENAUP	GRADE O MATTILMATICS

PERIOD

Another way to divide 345 by 3 is by using the partial quotients method, in which we keep subtracting 3 groups of some amount from 345.

	1 1	5			1	1	5	
		5				5	0	
	1	0				5	0	
_	1 0	0				1	5	
з /	34	5		3	/3	4	5	
_	3 0	0	← 3 groups of 100		-	4	5	← 3 groups of 15
	4	5			3	0	0	
_	3	0	← 3 groups of 10		- 1	5	0	← 3 groups of 50
	1	5			1	5	0	
	- 1	5	← 3 groups of 5		- 1	5	0	← 3 groups of 50
_		0		·			0	

- In the calculation on the left, first we subtract 3 groups of 100, then 3 groups of 10, and then 3 groups of 5. Adding up the partial quotients (100 + 10 + 5) gives us 115.
- The calculation on the right shows a different amount per group subtracted each time (3 groups of 15, 3 groups of 50, and 3 more groups of 50), but the total amount in each of the 3 groups is still 115. There are other ways of calculating 345 ÷ 3 using the partial quotients method.

Both the base-ten diagrams and partial quotients methods are effective. If, however, the dividend and divisor are large, as in $1,248 \div 26$, then the base-ten diagrams will be time-consuming.

DATE

PERIOD

Unit 5, Lesson 9: Using the Partial Quotients Method

1. Here is one way to find $2,105 \div 5$ using partial quotients.

		4	2	1	Show a different way of using partial quotients to divide 2,105 by 5.
			2	0	
		4	0	0	
5	<u>_</u> 2	1	0	5	
_	- 2	0	0	0	
		1	0	5	
-	-	1	0	0	
				5	
		-		5	
				0	

2. Andre and Jada both found $657 \div 3$ using the partial quotients method, but they did the calculations differently, as shown here.

							2	1	9	
	2	1	9						9	
			9					6	0	
		1	0				1	0	0	
	2	0	0					5	0	
3	6	5	7			3	6	5	7	
	- 6	0	0			-	- 1	5	0	
		5	7			-	5	0	7	
	_	3	0			-	- 3	0	0	
		2	7			-	2	0	7	
	_	2	7			-	- 1	8	0	
			0			-		2	7	
							_	2	7	
									0	
Ar	ndre	s's	Wc	ork		Ja	da's	5 V	Vor	۶k

a. How is Jada's work similar to and different from Andre's work?

b. Explain why they have the same answer.

3. Which might be a better way to evaluate $1,150 \div 46$: drawing base-ten diagrams or using the partial

DATE

PERIOD

quotients method? Explain your reasoning.

4. Here is an incomplete calculation of $534 \div 6$.

Write the missing numbers (marked with "?") that would make the calculation complete.

- 5. Use the partial quotients method to find $1,032 \div 43$.
- 6. Which of the polygons has the greatest area?
 - A. A rectangle that is 3.25 inches wide and 6.1 inches long.
 - B. A square with side length of 4.6 inches.
 - C. A parallelogram with a base of 5.875 inches and a height of 3.5 inches.
 - D. A triangle with a base of 7.18 inches and a height of 5.4 inches.

(from Unit 5, Lesson 8)

- 7. One micrometer is a millionth of a meter. A certain spider web is 4 micrometers thick. A fiber in a shirt is 1 hundred-thousandth of a meter thick.
 - a. Which is wider, the spider web or the fiber? Explain your reasoning.

b. How many meters wider?

DATE

PERIOD

(from Unit 5, Lesson 4)