PERIOD

# Unit 4, Lesson 8: How Much in Each Group? (Part 1)

Let's look at division problems that help us find the size of one group.

### 8.1: Inventing a Scenario

1. Think of a situation with a question that can be represented by  $12 \div \frac{2}{3} = ?$  Write a description of that situation and the question.

2. Trade descriptions with your partner, and answer your partner's question.

#### 8.2: How Much in One Batch?

To make 5 batches of cookies, 10 cups of flour are required. How many cups of flour does each batch require?

We can write equations and draw a diagram to represent this situation. They help us see that each batch requires 2 cups of flour.



For each question, write a multiplication equation and a division equation, draw a diagram, and answer the question.

1. To make 4 batches of cupcakes, it takes 6 cups of flour. How many cups of flour are needed for 1 batch?

PERIOD

2. To make  $\frac{1}{2}$  batch of rolls, it takes  $\frac{5}{4}$  cups of flour. How many cups of flour are needed for 1 batch?

3. Two cups of flour make  $\frac{2}{3}$  batch of bread. How many cups of flour make 1 batch?

#### 8.3: One Container and One Section of Highway

Here are three tape diagrams and three descriptions of situations that include questions.

Match a diagram to each situation, then use the diagram to help you answer the question. Next, write multiplication and division equations to represent each situation.



| NAME |                                                                                                                                        | DATE                     | PERIOD |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--|
|      | 1. Tyler poured 15 cups of water into 2 equal-sized bottles and filled each bottle. How much water was in each bottle?                 |                          |        |  |
|      | Diagram:                                                                                                                               | Multiplication equation: |        |  |
|      | Answer:                                                                                                                                | Division equation:       |        |  |
|      | 2. Kiran poured 15 cups of water into equal-sized pitchers and filled $1\frac{1}{2}$ pitchers. How much water was in the full pitcher? |                          |        |  |
|      | Diagram:                                                                                                                               | Multiplication equation: |        |  |
|      | Answer:                                                                                                                                | Division equation:       |        |  |
|      | 3. It takes 15 cups of water to fill $\frac{1}{3}$ pail. How much water is needed to fill 1 pail?                                      |                          |        |  |
|      | Diagram:                                                                                                                               | Multiplication equation: |        |  |
|      | Answer:                                                                                                                                | Division equation:       |        |  |
|      |                                                                                                                                        |                          |        |  |

Here are three more diagrams and situations. Match a diagram to each situation, and use the diagram to help you answer the question. Next, write multiplication and division equations to represent each situation.



|                                                                                                                                                                                                                                                                                      | DATE                | PERIOD |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--|--|--|--|
| 4. Priya's class has adopted two equal sections of a highway to keep clean. The combined length is $\frac{3}{4}$ of a mile. How long is each section?                                                                                                                                |                     |        |  |  |  |  |
| Diagram:                                                                                                                                                                                                                                                                             | Multiplication equa | ation: |  |  |  |  |
| Answer:                                                                                                                                                                                                                                                                              | Division equation:  |        |  |  |  |  |
| 5. Lin's class has also adopted some sections of highway to keep clean. If $1\frac{1}{2}$ sections are $\frac{3}{4}$ mile long, how long is each section?                                                                                                                            |                     |        |  |  |  |  |
| Diagram:                                                                                                                                                                                                                                                                             | Multiplication equa | ation: |  |  |  |  |
| Answer:                                                                                                                                                                                                                                                                              | Division equation:  |        |  |  |  |  |
| 6. A school has adopted a section of highway to keep clean. If $\frac{1}{3}$ of the section is $\frac{3}{4}$ mile long, how long is the section?                                                                                                                                     |                     |        |  |  |  |  |
| Diagram:                                                                                                                                                                                                                                                                             | Multiplication equa | ation: |  |  |  |  |
| Answer:                                                                                                                                                                                                                                                                              | Division equation:  |        |  |  |  |  |
| Are you ready for more?                                                                                                                                                                                                                                                              |                     |        |  |  |  |  |
| TO Make a Califor femaly set.                                                                                                                                                                                                                                                        |                     |        |  |  |  |  |
| <ul> <li>Start with a tape diagram of length 1 unit. This is step 1.</li> <li>Color in the middle third of the tape diagram. This is step 2.</li> <li>Do the same to each remaining segment that is not colored in. This is step 3.</li> <li>Keep repeating this process.</li> </ul> |                     |        |  |  |  |  |
| step 1                                                                                                                                                                                                                                                                               |                     |        |  |  |  |  |
| step 2                                                                                                                                                                                                                                                                               |                     |        |  |  |  |  |

step 3

NAME

| NAME | DATE |
|------|------|

PERIOD

1. How much of the diagram is colored in after step 2? Step 3? Step 10?

- 2. If you continue this process, how much of the tape diagram will you color?
- 3. Can you construct a process that will give you a similar kind of object? For example, color the first fifth instead of the middle third of each strip.

#### **Lesson 8 Summary**

Sometimes we know the amount for *multiple* groups, but we don't know how much is in one group. We can use division to find out.

For example: If 5 people share  $8\frac{1}{2}$  pounds of cherries equally, how many pounds of cherries does each person get?



We can represent this situation as a multiplication and a division:

$$5 \cdot ? = 8\frac{1}{2}$$
$$8\frac{1}{2} \div 5 = ?$$

 $8\frac{1}{2} \div 5$  can be written as  $\frac{17}{2} \div 5$ . Dividing by 5 is equivalent to multiplying by  $\frac{1}{5}$ , and  $\frac{17}{2} \cdot \frac{1}{5} = \frac{17}{10}$ . This means each person gets  $1\frac{7}{10}$  pounds.

Other times, we know the amount for *a fraction* of a group, but we don't know the size of one whole group. We can also use division to find out.

For example: Jada poured 5 cups of iced tea in a pitcher and filled  $\frac{2}{3}$  of the pitcher. How

NAME DATE PERIOD

many cups of iced tea fill the entire pitcher?



We can represent this situation as a multiplication and a division:

$$\frac{2}{3} \cdot ? = 5$$
$$5 \div \frac{2}{3} = ?$$

The diagram can help us reason about the answer. If  $\frac{2}{3}$  of a pitcher is 5 cups, then  $\frac{1}{3}$  of a pitcher is half of 5, which is  $\frac{5}{2}$ . Because there are 3 thirds in 1 whole, there would be  $(3 \cdot \frac{5}{2})$  or  $\frac{15}{2}$  cups in one whole pitcher. We can check our answer by multiplying:  $\frac{2}{3} \cdot \frac{15}{2} = \frac{30}{6}$ , and  $\frac{30}{6} = 5$ .

Notice that in the first example, the number of groups is greater than 1 (5 people) and in the second, the number of groups is less than 1 ( $\frac{2}{3}$  of a pitcher), but the division and multiplication equations for both have the same structures.

PERIOD

## Unit 4, Lesson 8: How Much in Each Group? (Part 1)

- 1. For each scenario, use the given tape diagram to help you answer the question. Mark up and label the diagrams as needed.
  - a. Mai has picked 1 cup of strawberries for a cake, which is enough for  $\frac{3}{4}$  of the cake. How many cups does she need for the whole cake?



b. Priya has picked  $1\frac{1}{2}$  cups of raspberries, which is enough for  $\frac{3}{4}$  of a cake. How many cups does she need for the whole cake?



- 2. Tyler painted  $\frac{9}{2}$  square yards of wall area with 3 gallons of paint. How many gallons of paint does it take to paint each square yard of wall?
  - a. Write multiplication and division equations to represent the situation.
  - b. Draw a diagram to represent the situation and to answer the question.

- 3. After walking  $\frac{1}{4}$  mile from home, Han is  $\frac{1}{3}$  of his way to school. What is the distance between his home and school?
  - a. Write multiplication and division equations to represent this situation.
  - b. Use the given diagram to help you answer the question. Mark up and label it as needed.

DATE PERIOD

4. Here is a division equation:  $\frac{4}{5} \div \frac{2}{3} = ?$ 

NAME

a. Write a multiplication equation that corresponds to the division equation.

b. Draw a diagram to represent and answer the question.

(from Unit 4, Lesson 7)

- 5. A set of books that are each 1.5 inches wide are being organized on a bookshelf that is 36 inches wide. How many books can fit on the shelf?
  - a. Write a multiplication equation and a division equation to represent this question.
  - b. Find the answer. Draw a diagram, if needed.
- c. Use the multiplication equation to check your answer.

(from Unit 4, Lesson 3)

6. a. Without calculating, order the expressions based on their values, from smallest to largest. $56 \div 8$  $56 \div 8,000,000$  $56 \div 0.000008$ 

PERIOD

b. Explain how you decided the order of the three expressions.

c. Find a number *n* so that  $56 \div n$  is greater than 1 but less than 7.

(from Unit 4, Lesson 1)

NAME