

- 1. The graph of a function f is shown above. Which of the following statements about f is false?
- a. f is continuous at x = a.
- b. *f* has a relative maximum at x = a.
- c. x = a is in the domain of f.
- d. $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).$
- e. $\lim_{x \to a} f(x)$ exists.

- 2. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function *f*. Which of the following statements must be true?
- a. f(0) = 2
- b. $f(x) \neq 2$ for all $x \ge 0$
- c. f(2) is undefined.
- d. $\lim_{x\to 2} f(x) = \infty$
- e. $\lim_{x \to \infty} f(x) = 2$

- 3. Let *f* be a function that is continuous on the closed interval [2,4] with f(2)=10 and f(4)=20. Which of the following is guaranteed by the Intermediate Value Theorem?
- a. f(x) = 13 has at least one solution in the open interval (2,4).
- b. f(3) = 15.
- c. f attains a maximum on the open interval (2,4).
- d. f'(x) = 5 has at least one solution in the open interval (2,4).
- e. f'(x) > 0 for all x in the open interval (2,4).

- 4. If $\lim_{x\to 3} f(x) = 7$, which of the following must be true? I. *f* is continuous at x = 3. II. *f* is differentiable at x = 3. III. f(3) = 7.
- a. None.
- b. II only.
- c. III only.
- d. I and III only.
- e. I, II, and III

- 5. If $\lim_{x \to a} f(x) = L$, where *L* is a real number, which of the following must be true?
- a. f'(a) exists.
- b. f(x) is continuous at x = a.
- c. f(x) is defined at x = a.

d.
$$f(a) = L$$

e. none of the above.

6. At
$$x = 3$$
, the function given by $f(x) = \begin{cases} x^2, & x < 3 \\ 6x - 9, & x \ge 3 \end{cases}$ is

- a. undefined.
- b. continuous but not differentiable.
- c. differentiable but not continuous.
- d. neither continuous nor differentiable.
- e. both continuous and differentiable.

- 7. Which of the following are continuous at x = 1?
 I. ln(x)
 II. e^x
 III. ln(e^x 1)
- a. I only
- b. II only
- c. I and II only
- d. II and III only
- e. I, II, and III

8. If the function f is continuous for all real numbers and if $f(x) = \frac{x^2 - 4}{x + 2}$ when $x \neq -2$, then f(-2) =

- a. -4
- b. -2
- c. -1
- d. 0
- e. 2

- 9. If *f* is a continuous function on [a,b], which of the following is necessarily true?
- a. f' exists on (a,b).
- b. If $f(x_0)$ is a maximum of f, then $f'(x_0) = 0$.
- c. $\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$ for $x_0 \in (a,b)$.
- d. f'(x) = 0 for some $x \in [a,b]$.
- e. The graph of f' is a straight line.

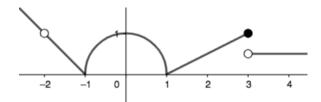
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

- 10. Let f be the function defined above. Which of the following statements about f are true?
 I. f has a limit at x = 2.
 II. f is continuous at x = 2.
 - III. *f* is differentiable at x = 2.
- a. I only.
- b. II only.
- c. III only.
- d. I and II only.
- e. I, II, and III.

11. What is the domain of the function f given by $f(x) = \frac{\sqrt{x^2 - 4}}{x - 3}$?

- a. $\left\{x: x \neq 3\right\}$
- b. $\left\{ x : \left| x \right| \le 2 \right\}$
- c. $\left\{ x : \left| x \right| \ge 2 \right\}$
- d. $\left\{ x : |x| \ge 2 \text{ and } x \neq 3 \right\}$
- e. $\{x : x \ge 2 \text{ and } x \neq 3\}$

12. What is $\lim_{x \to \infty} \frac{x^2 - 4}{2 + x - 4x^2}$? a. -2 b. $-\frac{1}{4}$ c. $\frac{1}{2}$ d. 1 e. The limit does not exist.

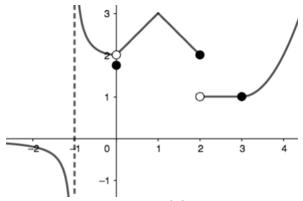


13. The graph of a function *f* is shown above. For which of the following values of *c* does $\lim_{x\to c} f(x) = 1$?

- a. 0 only
- b. 0 and 3 only
- c. -2 and 0 only
- d. -2 and 3 only
- e. -2, 0, and 3

14. The graph of which of the following equations has y = 1 as an asymptote?

a. $y = \ln(x)$ b. $y = \sin(x)$ c. $y = \frac{x}{x+1}$ d. $y = \frac{x^2}{x+1}$ e. $y = e^{-x}$



15. The graph of a function *f* is shown above. If $\lim_{x\to b} f(x)$ exists and *f* is not continuous at *b*, then b =

- a. -1
- b. 0
- c. 1
- d. 2
- e. 3

- 16. A polynomial p(x) has a relative maximum at (-2,4), a relative minimum at (1,1), a relative maximum at (5,7), and no other critical points. How many zeros does p(x) have?
- a. One
- b. Two
- c. Three
- d. Four
- e. Five

- 17. If a function f is continuous for all x and if f has a relative maximum at (-1,4) and a relative minimum at (3,-2), which of the following statements must be true?
- a. The graph of *f* has a point of inflection somewhere between x = -1 and x = 3.
- b. f'(-1) = 0
- c. The graph of *f* has a horizontal asymptote.
- d. The graph of *f* has a horizontal tangent at x = 3.
- e. The graph of f intersects both axes.

- 18. Let *f* be a continuous function on the closed interval [-3,6]. If f(-3) = -1 and f(6) = 3, then the Intermediate Value Theorem guarantees that
- a. f(0) = 0
- b. $f'(c) = \frac{4}{9}$ for at least one c between -3 and 6.
- c. $-1 \le f(x) \le 3$ for all x between -3 and 6.
- d. f(c) = 1 for at least one c between -3 and 6.
- e. f(c) = 0 for at least one *c* between -1 and 3.

x	0	1	2
f(x)	1	k	2

19. The function *f* is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =

a. 0 b. $\frac{1}{2}$ c. 1 d. 2 e. 3

20. Let f be a function that is differentiable on the open interval (1,10). If f(2) = -5, f(5) = 5, and

f(9) = -5, which of the following must be true? I. *f* has at least 2 zeros. II. The graph of *f* has at least one horizontal tangent. III. For some *c*, 2 < c < 5, f(c) = 3.

a. None

b. I only

- c. I and II only
- d. I and III only
- e. I, II, and III

- 21. Let g be a continuous function on the closed interval [0,1]. Let g(0)=1 and g(1)=0. Which of the following is NOT necessarily true?
- a. There exists a number h in [0,1] such that $g(h) \ge g(x)$ for all x in [0,1].
- b. For all *a* and *b* in [0,1], if a = b, then g(a) = g(b).
- c. There exists a number *h* in [0,1] such that $g(h) = \frac{1}{2}$.
- d. There exists a number *h* in [0,1] such that $g(h) = \frac{3}{2}$.
- e. For all *h* in the open interval (0,1), $\lim_{x \to h} g(x) = g(h)$.

22.	$\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2}$ is
a.	$-\frac{1}{2}$
b.	0
c.	1
d.	$\frac{5}{3}$
e.	nonexistent

23.
$$\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$$
 is

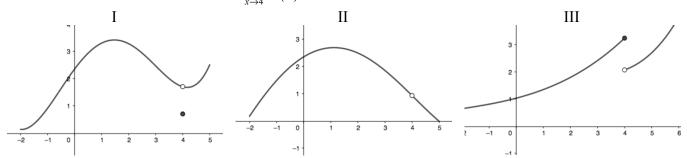
- a. -3 b. -2 c. 2

- d. 3
- e. nonexistent

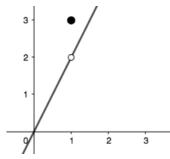
24.
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1}$$
 is
a. 4
b. 1
c. $\frac{1}{4}$
d. 0
e. -1

25.
$$\lim_{n \to \infty} \frac{3n^3 - 5n}{n^3 - 2n^2 + 1}$$
 is
a. -5
b. -2
c. 1
d. 3
e. nonexistent

26. For which of the following does $\lim_{x\to 4} f(x)$ exist?



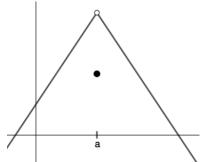
- a. I onlyb. II only
- c.
- d.
- III only I and II only I and III only e.



27. The graph of the function *f* is shown in the figure above. The value of $\lim_{x\to 1} (\sin(f(x)))$ is

- a. 0.909
- b. 0.841
- c. 0.141
- d. -0.416
- e. nonexistent

28. If
$$f(x) = \begin{cases} \ln(x) & \text{for } 0 < x \le 2\\ x^2 \ln(2) & \text{for } 2 < x \le 4 \end{cases}$$
, then $\lim_{x \to 2} f(x)$ is
a. $\ln(2)$
b. $\ln(8)$
c. $\ln(16)$
d. 4
e. nonexistent

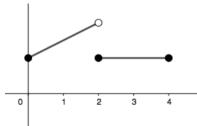


29. The graph of the function f is shown above. Which of the following statements must be false?

- a. f(a) exists
- b. f(x) is defined for 0 < x < a.
- c. f is not continuous at x = a.

d.
$$\lim_{x \to a} f(x)$$
 exists.
e. $\lim_{x \to a} f'(x)$ exists.

30. If
$$a \neq 0$$
, then $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ is
a. $\frac{1}{a^2}$
b. $\frac{1}{2a^2}$
c. $\frac{1}{6a^2}$
d. 0
e. nonexistent



31. The figure above shows the graph of a function *f* with domain $0 \le x \le 4$. Which of the following statements are true?

I. $\lim_{x \to 2^{-}} f(x)$ exists. II. $\lim_{x \to 2^{+}} f(x)$ exists.

III. $\lim_{x \to 2} f(x)$ exists.

- a. I only
- b. II only
- c. I and II only
- d. I and III only
- e. I, I, and III

$$f(x) = \begin{cases} \frac{(2x+1)(x-2)}{(x-2)} & \text{for } x \neq 2\\ k & \text{for } x = 2 \end{cases}$$

32. Let *f* be the function defined above. For what value of *k* is *f* continuous at x = 2?

- a. 0
- b. 1
- c. 2
- d. 3
- e. 5

33. If the graph of $y = \frac{ax+b}{x+c}$ has a horizontal asymptote y = 2 and a vertical asymptote x = -3, then a + c =

- a. -5 b. -1
- c. 0
- d. 1
- e. 5